Selecting research and thesis topics in machine learning projects is the first choice of masters and Doctorate scholars. Selecting and working on a thesis topic in machine learning is not an easy task as machine learning uses statistical algorithms to make computers work in a certain way without being explicitly programmed.
Text Mining and Text Classification
Text mining (also referred to as text analytics) is an artificial intelligence (AI) technology that uses natural language processing (NLP) to transform the free (unstructured) text in documents and databases into normalized, structured data suitable for analysis or to drive machine learning (ML) algorithms. Text classification tools categorize text by understanding its overall meaning, without predefined categories being explicitly present within the text. This is one of the best research and thesis topics for ML projects.
Image-Based Applications
An image-based test consists of a sequence of operations on UI elements in your tested application: clicks (for desktop and web applications), touches (for mobile applications), drag and drop operations, checkpoints, and so on. In image applications, one must first get familiar with masks, convolution, edge, and corner detection to be able to extract useful information from images and further use them for applications like image segmentation, keypoints extraction, and more.
Machine Vision
Using machine learning-based/mathematical techniques to enable machines to do specific tasks. For example, watermarking, face identification from datasets of images with rotation and different camera angles, criminals identification from surveillance cameras (video and series of images), handwriting and personal signature classification, object detection/recognition.
Clustering
Clustering or cluster analysis is a machine learning technique, which groups the unlabeled dataset. It can be defined as “A way of grouping the data points into different clusters, consisting of similar data points. For example Graph clustering, data clustering, density-based clustering, and more. Clustering is one of the best research and thesis topics for ML projects.
Optimization
A) Population-based optimization inspired from a natural mechanism: Black-box optimization, multi/many-objective optimization, evolutionary methods (Genetic Algorithm, Genetic Programming, Memetic Programming), Metaheuristics (e.g., PSO, ABC, SA)
B) Exact/Mathematical Models: Convex optimization, Bi-Convex, and Semi-Convex optimization, Gradient Descent, Block Coordinate Descent, Manifold Optimization, and Algebraic Models
Voice Classification
Voice classification or sound classification can be referred to as the process of analyzing audio recordings. Voice and Speech Recognition, Signal Processing, Message Embedding, Message Extraction from Voice Encoded, and more are the best research and thesis topics for ML projects.
Sentiment Analysis
Sentiment analysis is one of the best Machine Learning projects well-known to uncover emotions in the text. By analyzing movie reviews, customer feedback, support tickets, companies may discover many interesting things. So learning how to build sentiment analysis models is quite a practical skill. There is no need to collect the data yourself. To train and test your model, use the biggest open-source database for sentiment analysis created by IMDb.
Recommendation Framework Project
This a rich dataset assortment containing a different scope of datasets accumulated from famous sites like Goodreads book audits, Amazon item surveys, online media, and so forth You will probably fabricate a recommendation engine (like the ones utilized by Amazon and Netflix) that can create customized recommendations for items, films, music, and so on, because of client inclinations, needs, and online conduct.
Mall Customers’ Project
As the name suggests, the mall customers’ dataset includes the records of people who visited the mall, such as gender, age, customer ID, annual income, spending score, etc. You will build a model that will use this data to segment the customers into different groups based on their behavior patterns. Such customer segmentation is a highly useful marketing tactic used by brands and marketers to boost sales and revenue while also increasing customer satisfaction.
Object Detection with Deep Learning
Object Detection with Deep Learning is one of the interesting machine learning projects to create. When it comes to image classification, Deep Neural Networks (DNNs) should be your go-to choice. While DNNs are already used in many real-world image classification applications, it is one of the best ML projects that aims to crank it up a notch. In this Machine Learning project, you will solve the problem of object detection by leveraging DNNs.
#viastudy
0 Comments